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Within the limits of a semi-empirical theory based on a two-layer
system, as proposed in [56], an examination is made of the influence
of mass addition, homogeneous with the main flow, on friction and
the parameters of the turbulent boundary layer (thickness of the lami-
nar sublayer, velocity at the edge of the laminar sublayer, etc.),

The influence of mass addition on surface friction
and heat transfer in the turbulent-boundary-layer case
is examined in {1-5] and elsewhere. In the solution of
the corresponding equations, additional assumptions
of one kind or another were made regarding the thick-
ness of the laminar sublayer or the velocity at its
edge. The present paper investigates the influence of
mass addition on the parameters of the boundary layer
and on friction, on the basis of the general relations
of a two-layer system in the semiempirical theory of
turbulence.

To evaluate the validity of the limiting laws devel-
oped in [6], and also for simplicity of calculation, the
case of an incompressible liquid is examined here.
More complicated problems will be examined in later
papers.

To obtain an approximate solution of the problem
posed, we shall assume that the friction stress may
be represented as a polynomial in the dimensionless
velocity ¢ = vx/u, this being

T =T (l - A1Q? + Aszz -+ A3¢P3)- (1)

We shall determine coefficients A;, A, and A; from
the boundary conditions, using the equations of motion
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From (2), we find that, when ¢ = 0
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Using (3), and also the condition that, when ¢ = 1,
T =0, we obtain (1) in the form
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In accordance with the basic relations of the semi-
empirical theory of turbulence, we shall assume that

T=kp uz(aq’ )2 (5)

dy

when y =0y or ¢ = ¢y, and when y = 0L,

T =pud@/dy. 6)

The thickness of the laminar sublayer is deter-
mined from the condition
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From (7), taking (5) and (6) into account, we obtain
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Substituting 7 from (4) into (8), we have
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We shall use (4) and (6) to determine ¢1,. From them
we have
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Integrating the last equation and neglecting <p3, we
obtain

Te = A-In(l - Ag) for y < 8y, (10)
wu
where A = pvgu/Ty.
Agsuming y = 61,, ¢ = @7, from (10), we obtain a
se_cond equation for determing 67, and ¢71,:
Topfpu = A" In(1 4 Ag)). (11
We shall mtroduce the relative values 67, = 61./61,,
oL = oL/¢Le, of = cf/cfo, where 6Ly, @10, €y are
corresponding values of GL, ¢1, and of the local fric-
tion coefficient ¢y = 27y/) pu when there is no blowing
(A = 0). Then, neglecting ga , we may write (9) and
(10) in the form

oL ={a +Noper ™", (12)
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The last equation enables us to evaluate qaL asa
function of N, ¢y, if c]c is known. To determine Cf
we shall first obtain an expression for the velocity
profile in the turbulent core by simultaneous solution
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of (4) and (5). We shall limit ¢ to the first degree in

(4); integrating (5) with the conditions y =6, ¢ = 1,
we obtain the velocity profile when y = 61, in the form

wVE(%)-

Putting ¢ = ¢, y = 61, in (14), we obtain

r
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In the absence of blowing,

8e/810 = exp [k (1 — @Vl (18)

Taking (12) and (16) into account, (15) may be written
as ‘
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In order to close the system of equations (12), (13),
and (17) which determine 6ff, (pf, c; and 5*, we shall
use the von Karman integral relation, which, in the
case of a plate with blowing, may be written as fol-
lows:

d@/dx = c;/2 4 b, 18)

where

-

INZHENERNO-FIZICHESKII ZHURNAL

We shall first determine © /6. We have

1
8/6=| ¢ (1 — q)d ().
5
It follows from (14) that
V G+N In ( ) + )

Substituting this expression for the velocity in the pre-
ceding relation and performing the integration, we
obtain
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When N — 0 we obtain
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Dividing (19) by (20) and using (7), we shall find
®* = ©/0;. Introducing ®* into (18) and going over to
a new independent variable ¢1,, we obtain

(

If we replace @* in the last equation by its value ob-
tained from (19), (20), and (17), eliminating go’l': with
the aid of (13), we obtain an ordinary nonlinear dif-
ferential equation for determining c} as a function of
91,0 and of the blowing parameter N. Here N may be
both a constant and a function of ¢p,.

The dependence of ¢, on Rey is found from the
known relations which are easily obtained from (16),
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Fig. 1. Dependence of the friction coefficient on the

blowing parameter: a) with ¢1,=0.60 and Rex =

=9,55-10* (1); 0. 45 and 2. 24 x 10° (2); 0. 35 and

6.32 x 107 (3); @1, — 0 and Rey — = (4); b) with N =1
1), 2 @), 3 3).
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(18), and (20). Equation (21) has been solved numeri-
cally, taking account of (13), (17), (19), and (26), for
two cases: When N = const and when b = const.

Because of the undetermined initial conditions at
the front of the plate, blowing was predicated with
¢11=0.70 (¢ corresponds to ¢y, at which blowing
begins). The results of the solution for N = const are
shown in Figs, 1-3.

Figure la shows the dependence of relative fric-
tion coefficient on the blowing parameter. It com-
prises a family of curves with parameter ¢y, (or
Rex). Also shown is the curve corresponding to the
limiting laws [6], and the experimental points of
Mickley [7], as corresponding most closely to the con-
ditions of the calculation (Ma — 0; Ty/T — 1; Rex ~
~ 10* — 10%. Tt may be seen from Fig. la that the
results of the calculation according to the method de-
scribed for finite Rey are closer to the experimental
points than the result of [6], while both coincide in
the limiting case of Rex — «. From Fig. lb, which
shows the dependence of c}‘ on @iy, it may be seen
that, at points near the origin of blowing, Cf depends
very much on ¢1,0, while as the distance from the
origin of blowing increases, the dependence of ¢}
on ¢1, becomes weaker, and when ¢4 < 0.45, it
may be assumed that the relative local friction coeffi-
cient does not depend on ¢1,. This information may
be used in formulating an approximate solution of
(21). In the situation when c¢f = const and N = const
along the plate, the solution of (21) may be written
as

0 = c;+N[1 _ 2o exp(kl Lo~ Pla ﬂ 22)
k1—2(PL0 Pro PLu

Then c; may be found from
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where ‘PL is determined from (13). Graphical solutxon
of (23) gives values of qoL near the origin of blowing,
differing from the exact solution values by less than
10%. As the distance from the origin of blowing in-
creases, so too does the accuracy of agreement of
the two solutions, and, for 6% =0.40 and under, it
reaches tenths of a percent. If the value of b remains
constant along the plate, the solution of (22) may be
written in the form
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We may also determine cf approximately from the
equation
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Variation of the Ratio with
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Change of the Blowing Parameters
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Opo In £y /ln 3. for v
1.0 3.0 ' 5.0
0.600 1.11 1.23 1.38
0.550 1.08 1.19 1.27
0.450 1.05 1.12 117
0.350 1.03 1.06 1.06
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Fig. 2. Dependence of "”;, (@), and of GL(b) on N:
1-3) see Fig. l1a.
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Fig. 3. Dependence of . /% (a) and @ (b) on N:
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1--3) see Fig. 1a.

The accuracy of agreement of the approximate and
exact solutions may be said to be the same also when
N = const along the plate.

It may be seen from Fig. 2 that wi always de-
creases with N, and does so faster, the larger Ry is;
also, as far as 6] is concerned, when Rey ~ 10 and
N is small, 6i first decreases and then increases with
increasing N. With Rey ~ 10% for any N, an increase
in the thickness of the laminar sublayer is observed.
This one-sided variation of thickness of the laminar
sublayer is evidently due to a twofold influence of
blowing. On the one hand, it makes the laminar sub-
layer turbulent, and on the other hand, by decreasing
the friction, it favors an increase of sublayer, It is
suggested in some papers {3, 4] that o1, vx/u and
that the ratio ¢ ! Lu— remains constant during blow-

/
ing and equal to its value in the absence of blowing.

U
It may be seen from Fig. 3a that the ratio L / o

increases with N, particularly when N > 3. Fig. 3b
gives @* as a function of N and ¢1,. The figure shows
that the momentum loss thickness increases with in-
crease of the blowing parameter.

In order to evaluate possible limiting laws, values

of In —f ,/ In 66~° are presented in the table, from
L Lo
which it may be seen that this ratio is close to 1 and

that, beginning from ¢y, = 0.45, it varies negligibly
with N. This enables us to suggest the following sim-
plified solution to the problem of the influence of blow-
ing on the parameters of the turbulent boundary layer.

Assuming that In —g— / lngl" ~ |. approximately, we
L Lo
obtain from (15) and (16)
N(l—g)=2) ¢ =N —y ¢ =~ Noyol. @5)

Simultaneous solution of this last equation and (13)
gives c; and @7, as functions of N and ¢1,4. In engi-
neering calculations the influence of blowing may be
evaluated according to (25) and (13) approximately,
and more accurately from (23) and (13),

NOT ATION

X,y) longitudinal and transverse coordinates; vy, vy) longitudinal
and transverse velocity components; u) free steam velocity; v,) blow-
ing velocity; p) density; k = 0,39 and k, = 4, 30) empirical turbulence
censtants; {) viscosity; r,) friction stress at the wall; @) momentum
thickness; 8) thickness of the boundary layer; v,) dynamic velocity.
Subscripts relate to the parameters: w) on the plate; L) at the edge of
the laminar sublayer; 0) in the absence of blowing.
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